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!"#$%&'(()*+&),-&.$/$,0$&10$&!)0$0&/2%&'3(2,24230&),-&
5$42($&67$%)(82,0&/2%&'-9),*$-&5 $)*(2%0&

$@) M+NOA4-P0*)

In March of 2021 we published a Cyber-Threat Assessment Methodology for Autonomous and Remote 
Operations for Advanced Reactors. This paper provided readers with a 5-step approach for conducting this 
type of assessment. This paper includes Use Cases derived from the application of this methodology to 
Autonomous and Remote Operations and their underlying systems and functions.  

$@$) I53Q4"!,4Q+.)F77Q77RQ0.)EQ.,-*-1-A5) JBQ4B/Q?)

This full assessment methodology is provided in the publication referenced in the 5#641.%7*"&section 
above. An overview of the assessment methodology is included for the reader who has not read through the 
full methodology but would like to understand the Use Cases and how to use them. As we stated in the 
methodology paper, we recommend cycling through the methodology steps and cyber threat assessment 
phases as many times as required to gain a sufficient understanding of the autonomous system attack surface 
and the commensurate adversarial capabilities that are considered plausible in subverting the defined system 
functions, processes, and components. With each finding is an opportunity to perform a consequence-based 
analysis and suggest countermeasures for mitigating the identified risks.  

$@#) D7Q)I+7Q)CN-<Q)+0*)D7+AQ)

The usefulness of any methodology is derived by its adoption and subsequent lessons learned as it is 
applied to operational environments. For this collection we include four use cases that represent: system 
level analysis of a set of Digital Twins (the example included within the Methodology); component level 
analysis of a distributed plant sensor system (DPSS) and distributed plant sensor monitoring system 
(DPSMS); subversion of a Digital Twin by attacking the dependent machine learning algorithms and 
implementation; and a broad-scale attack against the machine learning infrastructure of an Advanced 
Reactor vendor.  

!"#$%&'( )'*+,&%'-.%&/0'122&223&40'5&0.67686#+'!869!
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#@) S1+0.)J<Q4+./-07)FP.-0-R-P7)E+0+AQRQ0.)C57.QR)TSJFECU )
!,4 Q+.)F77Q77RQ0.)

This Use Case is sourced from the Methodology and is focused on a fictionally derived system 
responsible for managing Reactor Objectives and managing the suite of generation and transmission assets 
at a remote location. 

#@$) VQ7N4/<./-0)-W).,Q)F77Q77RQ0.)!+4AQ.)
This assessment will be performed on a Digital Twin (DT) responsible for diagnosis and strategy 

assessment of a Gen IV Reactor. The DT receives data from the reactor and plant subsystems and uses a 
machine learning classifier to implement a detection function. The DT uses algorithms (magically 
implemented for now) to process the classified protection data to implement a prediction function. The DT 
uses another set of algorithms to combine the prediction data with reactor and plant goals to implement a 
strategy selection function. The DT uses a fourth set of algorithms analyzing strategy options and 
implements a recommendation function. The recommendation function interfaces with plant management 
systems to execute the recommended strategy. If a cyber threat actor compromised data prior to its arrival 
at the detection function, the DT may recommend a strategy for execution that at best undermines the plant 
goals and at worse trigger a safety event. If a cyber threat actor compromised the algorithms used for 
strategy selection of recommendation optimization, the DT may induce a plant-wide lack-of-confidence 
event as the time to deconflict compromised algorithms in operational systems is significant. 

#@#) &-./-0+1)V/+A4+R )
This is a notional architecture for an !"#$%&'"( )'$&*+,( !-*+%+.+-/( 0$%$1'.'%*( 23/*'. (

4!)!025  responsible for managing Reactor Objectives within the Remote Plant and managing Power 
Generation and Transmission Objectives for the geographic region. The architecture includes an Advanced 
Reactor with power generating components, an autonomous system (upper right) responsible for reactor 
and plant subsystem autonomous functions; and an autonomous system (lower right) responsible for power 
generation and transmission. The reactor and plant subsystem autonomous functions manage the 

!"#$%&': ;'<60"64/8'="/#%/3'>6%'17?/4@&7'A&/@06%'1$064636$2'5/4/#&3&40'B+20&3!
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instrumentation (signals) and controls (actions) of the reactor and reactor subsystems through the use of 
machine learning classifiers that when combined with knowledge and strategies produce guidance and 
recommendations for the safe operation of the power reactor. 

The power generation and transmission autonomous system implements a traditional autonomous system 
management cycle to include ingesting reactor performance and diagnostic information into a machine 
learning classifier that computes reactor prognostics. The reactor prognostics combined with generation 
and transmission objectives and bounded by operator constraints (if any) inform the Decision Executive 
that is able to execute functions via the Reactor and Generation Executives. If a cyber threat actor conducted 
an attack against the Decision Executive function, generation resources could be constrained when demand 
thresholds have requested additional electricity load. 

#@:) K0PRQ4+./-0)-W)S4-NQ77Q78)I-R<-0Q0.7)+0*)6P0N./-07 )

The POAMS is deployed as three components that 
replace human operators, responsible for autonomously 
managing the nuclear reactor and plant subsystems. The 
three components take inputs from the Instrumentation 
sensors and execute actions via the control actuators. 
POAMS is delivered with a manifest that includes 
technical details on how the autonomous system is 
architected with full visibility into the design and development processes enabling the cyber threat 
assessment team to work through any subset of components they are interested in. The next section includes 
an edge case where the autonomous system is produced by a vendor and delivered as a black box.  

67!02(6,+&'//(8.9:'.'%*$*;+% (

POAMS utilizes a traditional autonomous system decision loop 
implemented across three components. This decision loop includes 
algorithms that perform detection of events (including anomalies) 
using machine learning classifiers; prediction of future operational 
states; strategy selection based upon analysis of future operational 
states; generation of recommendations on how to implement each 
strategy; and execution of the strategy chosen by the autonomous 
system. Annex II contains a detailed description of this process that is 
the main focal point of cyber threat assessments of autonomous 
systems. (

The assessment team may choose to merge this assessment 
methodology with their reactor and plant subsystems cyber threat assessment. The assessment team may 
also choose to merge this methodology with existing safety assessments incorporating the cyber threat 
elements. The boundary for this specific methodology is on the autonomous system processes, components, 
and functions and cyber threats related to designing, building, and deploying these capabilities in Advanced 
Reactors. 

67!02(<+ .9+%'%*($%"(=-%&*;+%(>%-.',$*;+% 

Within each POAMS component and function description, targets are denoted with the 4*$,1'*5 
attribute. This approach allows the assessment team to create a list of targets for cyber threat analysis.  
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3",&2*55*?$0-&C,%4#$()$*0%&4*0).$0&),#G$0*5*-6&%(,4$2$4&)*&)",&4*G(*0,0)%&.0C&2104)$*0%&D,$0-&C,%4#$D,C8&3",&
#,.C,#&$%&,04*1#.-,C&)*&%,.#4"&*0&H*131D,&2*#&)1)*#$.5&*0&)",%,&)*($4%8&

!"#$%&'("$)$*+", -.*/")0#12,This component is responsible for ingesting data from the monitoring 
systems and sensors. The instrumentation data (target) is written to a database (target) that is queried by a 
process (target) controlled by the Machine Learning (ML) classifiers (target).  

3)45*"(,6()%"*"/,70)##*8*(%#2&The ML Classifiers implement algorithms (target) that were developed 
by a team of Nuclear Engineering and ML experts (targets) at the Acme Corporation (target). The ML 
algorithms implement Supervised Learning (target), Reinforcement Learning (target), and Deep Learning 
(target), and were developed using the TensorFlow (target) ecosystem in Python!  (target) and Keras"  
(target). 

9"+:0(;/(, <, .$%)$(/*(# : A second suite of Python-implemented algorithms (target) provide 
Prediction, Strategy Selection, and Recommendations based upon a knowledgebase (target) and updatable 
strategy generation algorithm suite (target) provided by the Acme Corporation quarterly (distribution 
target). 

=&$+"+'+&#, >&*;)"4( : A third suite of Python-implemented algorithms (target) analyzes and 
optimizes the recommended strategies and executes the strategy by sending commands to reactor and plant 
subsystem management systems via interfaces (target) defined by the autonomous and control system 
interface specifications (target). 

7+"$%+0#, -=4$*+"#1: This component is responsible for the command interfaces (target – protocol 
implementation) with control systems (target – out of scope) and their corresponding actuators (target – out 
of scope).  

It is the interaction between 8#6$)*2&,2#.*)*1&9+#::)3)2.:;&<*%=+2"12&>&?(.#(21/&!@A+2@2*(#()%*;&#*"&
B7(%*%@%7:&C7)"#*62 that are priorities for assessment. These areas contain algorithms that are often 
implemented without best practice guidance and with unknown vulnerability exposures. 

!11,'1$*'"(?$,1'*(@;/*  

The assessment team can now produce an initial target list from the process, component and function 
enumeration tasks.  

!"#$%&&%&'()"#$%*+",-.'
A1)*0*G*1%&'6%),G%&7,4$%$*0&>**(&
A1)*0*G*1%&'6%),G%&7,%$-0&!645,&
I1.#),#56&')#.),-6&;(C.),&&
,
/"0,123,42#1&'
A4G,&!*#(*#.)$*0&
,
!%#)-%'
A4G,&!*#(*#.)$*0&JF(,#)%&
AC<.04,C&K,.4)*#&7,%$-0&3,.G&

5-0#"2467&,
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!&'1(,#<$%,C&>,.#0$0-&A5-*#$)"G%&
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&
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#@() I53Q4)!,4Q+.) F77Q77RQ0.)-W)FP.-0-R-P7)C57.QR)S4-NQ77Q7)
6A$/'(BC(2-D#',/;+%(79*;+%/($1$;%/*(*A'(?$,1'*(49,+&'//E(&+.9+%'%*E(+,(F-%&*;+%5(

Suppose that the analyzed attacker has an identified objective to prevent reliable energy production.  
Distortion and/or disruption of data flows from the Rod Control and Indication System to the central 
autonomous system could use that erroneous data to facilitate this objective and shutdown the reactor.  
Threat analysts would analyze the vulnerabilities of the Rod Control and Indication System as well as all 
direct and indirect supporting systems.   

!" ! #$%&'()*&(+&,$%&)--%--.%/,&0-&,(&1%,%2.0/%3&&

4"! 5$%,$%2&,$0-&,67%&(+&),,)89&-8%/)20(&:1),)&10-,(2,0(/&)/1&10-2;7,0(/<&0-&+%)-0=*%"&

>"! ?1%/,0+6& 10'0,)*& 1%7%/1%/80%-& (+& ,$%& @(1& A(/,2(*& B& ?/108),0(/& C6-,%.& )/1& $(D& ,$%-%& -6-,%.-&
0/,%2)8,&D0,$&);,(/(.(;-&8(/,2(*&-6-,%."&

E"! F%,%2.0/%&72(8%--&*%G%*&G;*/%2)=0*0,0%-&0/&,$%&-6-,%.&,$%&),,)89%2&8(;*1&*%G%2)'%"&

H"! F%.(/-,2),%1&,%8$/0I;%-&)/1&,((*-&,$),&8(;*1&+)80*0,),%&%J7*(0,),0(/&,(&82%),%&,$%&1%-02%1&%++%8,"&&

This includes identification of published vulnerabilities in autonomous system endpoints and 
subcomponents, vulnerabilities in the interconnected networks, how trust relationships are implemented for 
data flows, and how the data is generated, transmitted, processed, and stored. Central to this analysis is 
understanding whether accepted network rules and processes represent exploitable vulnerabilities that could 
cause the distortion and/or disruption of data to the Rod Control & Indication system. 

6A$/'(GC(?A,'$*(!&*+,(!**,;D-*'/($%"(<$9$D;:;*;'/ (

The presence of vulnerabilities in the system that could potentially lead to data distortion and/or 
disruption from the Rod Control & Indication System and trip the reactor under false pretenses is important 
information.   However, context provides assistance in prioritizing action for programmatic mitigation 
plans.  Does the adversary have the necessary capabilities to leverage these vulnerabilities can provide 
context for prioritization?  Specifically, threat assessment should determine if the attacker has the necessary 
Tactics, Techniques, and (demonstrated) procedures (TTPs) to: 

!" ! ?1%/,0+6&10-8(G%2%1&G;*/%2)=0*0,0%-"&

4"! 5%)7(/0K0/'&,$%&G;*/%2)=0*0,6&0/+(2.),0(/&0/,(&)/&%J%8;,)=*%&),,)89&7*)/"&

>"! L;0*1MN8I;02%&,$%&/%8%--)26&2%-(;28%-&,(&%J%8;,%&,$%&),,)89&7*)/"&

E"! O-,)=*0-$&0/0,0)*&)88%--&0/,(&,$%&-6-,%.&)/1&')0/&)88%--&,(&,$%&@(1&A(/,2(*&B&?/108),0(/&C6-,%."&

H"! A(/,2(*&,$%&1),)&'%/%2),%1&)/1&,2)/-.0,,%1&=6&,$%&@(1&A(/,2(*&B&?/108),0(/&C6-,%."&

Identifying these 5 threat actor attributes and capabilities determines the exposure of the system to 
attack and assists in optimal placement of cyber detection and protection capabilities. 

6A$/'(HC(2'&-,;*3(<+%*,+:/($%"()'/9+%/'(<+-%*',.'$/-,'/ (

Every threat actor TTP identified during Phase 2 generates a signature that informs protection, 
detection, and response procedures.  Advanced reactor autonomous systems will require highly controlled 
and monitored networks, requiring defensible network security and endpoint protection, and a methodical 
threat analysis to evaluate threat actor capabilities to evade defensive measures and avoid detection while 
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executing the attack plan. While the autonomous network might have continuous protection and detection 
parameters surrounding the endpoints of the Rod Control and Indication System, the attacker must 
demonstrate techniques to: 

!" ! OG)1%&1%+%/-0G%& -%8;20,6& 8(/,2(*-& )/1& 8(;/,%2.%)-;2%-& =6& ;/0/-,)**0/'& (2& 10-)=*0/'& -%8;20,6&
-(+,D)2%&)/1&(=+;-8),0/'&)/1M(2&%/8267,0/'&1),)&)/1&-8207,-"&

4"! OJ7*(0,&,2;-,&2%*),0(/-$07-&,(&)G(01&1%,%8,0(/"&&

>"! O-8)*),%&720G0*%'%-&0/&,$%&,)2'%,&%/G02(/.%/,"&&&&

Step 3 expands the threat actor capability analysis by:  

!" ! ?1%/,0+60/'&A(/,2(*&@(1&)/1&?/108),0(/&C6-,%.&-%8;20,6&.%)-;2%-"&

4"! O/;.%2),0/'&,$2%),&)8,(2&8)7)=0*0,0%-&,(&%G)1%&,$%-%&-%8;20,6&.%)-;2%-&,$2(;'$&PC?Q#&)/)*6-0-"&

Understanding this attack tactic is critical to complete Step 5 which transitions from understanding how 
an adversary can compromise a critical process to focusing on compromises of specific systems and 
components.  

#@;) I53Q4)!,4Q+.) F77Q77RQ0.)-W)FP.-0-R-P7)C57.QR) )
I-R<-0Q0. 7)+0*) 6P0N./-07 )

The threat assessment team should conduct a cyber threat assessment against each autonomous system 
component and function using the three-phase assessment approach. Prioritize the assessment targets based 
upon perceived targetability and associated consequence of subversion. Recognize that there will be inter-
component and inter-function dependencies that may benefit from an expanded assessment boundary that 
is left up to the discretion of the assessment team. Applying the Cyber Threat Assessment Process to 
POAMS is straight-forward.  

POAMS algorithms are created within a TensorFlow environment at the Acme Corporation. The ML 
Laboratory Technical Manager provided this notional diagram# of their development environment. The 
POAMS ML subject matter experts (SME) work in Jupyter Notebooks$ that to execute their TensorFlow 
algorithms within a docker container that is 
provided access to a database of training data 
seeded by the Advanced Reactor Nuclear 
Engineering SMEs. The ML SME develops and 
tests their algorithms and once they are 
complete requests a code and function review 
from another team member before exercising 
the two-person commit rule for submitting code 
to the production code repository.  

6A$/'(BC(2-D#',/;+%(79*;+%/($1$;%/*(*A'(?$,1'*(49,+&'//E(&+.9+%'%*E(+,(F-%&*;+%5(

How can this target be subverted through the use of cyber capabilities? A cyber threat actor has the 
following subversion options against this target: TensorFlow (development environment and library 
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7 

dependencies); Docker (containers that execute the code); Jupyter Notebooks (development interface with 
TensorFlow); Training Data (via an attack on the database or the data access functions); Dependency 
libraries; Hardware (CPU/GPU); ML SMEs (social engineering); Advanced Reactor Nuclear Engineering 
SMEs (social engineering). OSINT research identifies seven Tensorflow two Jupyter Notebook 
vulnerabilities published in 2018 and 2019. These include:  

• AROS4T!USUV>HW&AROS4T!XSYHYEMV3&Q;**&Z(0/,%2&F%2%+%2%/8%W&F%/0)*&(+&C%2G08%W&A(/,%J,&F%7%/1%/,&
[& AROS4T!XS!TTHH3&?/G)*01&\%.(26&N88%--&)/1&]%)7&L;++%2&PG%2+*(DW&A2)-$&
[& AROS4T!XSXX4HMYHYH3&L;++%2&PG%2+*(D&D0,$&N2=0,2)26&A(1%&OJ%8;,0(/W&OJ%8&A(1%&
[& AROS4T!XSXYVX3&^(2&_&GH"E"!W&)&.)*080(;-*6&+(2'%1&/(,%=((9&8)/&=67)--&-)/0,0K),0(/&,(&%J%8;,%&8(1%&
[& AROS4T!XSYHYY3&\%.876&7)2).%,%2&(G%2*)7&0/&`(('*%&C/)776&*0=2)26&
[& AROS4T!XSY4TV3&a;76,%2];=&PN;,$%/,08),(2&G;*/%2)=0*0,6&D0,$&`0,b)=&:/(,&)77*08)=*%<&

Each of these vulnerabilities has been remediated but an attack vector (bolded) that was once successful 
may be a future opportunity for subversion of this autonomous system component. A cyber threat actor 
may also engage the research community, similar to what Southern Eagle did, and papers published in the 
past two years provide insight into additional attack vectors and pathways: 

• 437809,%0:0309,.7,;<=,>4?/.:1;:0;<,;77;@A1,23,B;@803.,<.;:3036,@CD.:1.@5:07C,?.E.3@.1,03,!3?517:0;<,F237:2<,
GC17.B1=>,H25:3;<,2E,!3E2:B;7023,G.@5:07C,;3?,4II<0@;70231,JK,L)+)*MN,*+)O*O=,

P, ':2779,Q;/0?=,>Q.@.0/036,R;@803.1N,G;D27;6036,R;@803.,#.;:3036=>,FS4"F%,TT=),L)+)+MN,)+()U=,
P, -21.3D.:69, !8;09, .7, ;<=, >4?/.:1;:0;<, #.;:3036, 03, 78., FCD.:, G.@5:07C, Q2B;03=>, ;:&0/, I:.I:037,

;:&0/N)++O=+)U+O,L)+)+M=,
P, ?.,R.<<29,V<W/02,#501=,>4,15:/.C,23,B;@803.,<.;:3036,;?/.:1;:0;<,;77;@A1=>,H25:3;<,2E,!3E2:B;7023,G.@5:07C,

;3?,F:CI726:;I8C,L%306B;M,O=*,L)+)+MN,*(O=,
P, 4C5D9,R?,481;39,.7,;<=,>R2?.<,%/;1023,477;@A,23,!37:51023,Q.7.@7023,GC17.B1,51036,4?/.:1;:0;<,R;@803.,

#.;:3036=>,)+)+,JU78,4335;<,F23E.:.3@.,23,!3E2:B;7023,G@0.3@.1,;3?,GC17.B1,LF!GGM=,!%%%9,)+)+=,

These are novel approaches to subverting machine learning published in research journals that the threat 
assessment team should analyze for applicability to the POAMS ML Classification implementation.  

6A$/'(GC(?A,'$*(!&*+,(!**,;D-*'/($%"(<$9$D;:;*;'/ (

As the cyber threat assessment team works their way through each target, a taxonomy of attributes and 
capabilities will form that will serve as a source for subsequent assessments. When iterating through the 
process take some time to evaluate the state of threat actor attributes and capabilities as these will shift over 
time based upon their experiences and capability development achievements and failures.  

The subversion options in Phase 1 are focused on the TensorFlow environment, the suite of training 
and classification algorithms, and the dataset interfaces. The threat actors capable of conducting attacks 
against these targets will require at least two months of resource ($$) to conduct the reconnaissance, 
weaponization, and delivery of the attack payloads. They will need to be familiar with private corporations 
that employ data scientists and have a support network for specialty areas they are not proficient in such as 
design and implementation of Advanced Reactor autonomous systems and vulnerability analysis of ML 
algorithms.  

If the Acme Corporation Staff are part of the subversion target set defined by the cyber threat 
assessment team, the threat actor will require a social engineering capability along with either insider access 
to assess Operational Security (OPSEC) posture or an EXFIL capability to extract information on their 
OPSEC policies and procedures. Threat actors who are proficient with social engineering and influence 
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operations require thoughtful security controls and response countermeasures to include awareness training 
for all staff with privileged access to the target environment.  

6A$/'(HC(2'&-,;*3(<+%*,+:/($%"()'/9+%/'(<+-%*',.'$/-,'/ (

Similar to the taxonomy of threat actor attributes and capabilities, the threat assessment team should 
maintain a taxonomy of security controls and response countermeasures. This will both ease the analysis 
process and allow for defensive capability development roadmaps to be influenced by the autonomous 
system cyber threat analysis. 

Security controls should be identified for restricting access to the physical and virtual algorithm 
development environments as well as the training data. Security controls should be implemented that 
provide a non-repudiated audit of algorithm code commit events and all distribution stream events as the 
algorithms are sent to target systems, such as the Advanced Reactor autonomous system. Development and 
production environment module integrity checks should be operational. The incident response process 
should be reviewed such that it includes digital (cyber) events, along with Physical intrusion events, and 
any reported OPSEC events related to social engineering or perceived external manipulation of algorithms.  

While the process for conducting cyber threat assessments is straight-forward, the assessment team 
must be cautious at first in bounding their target space and carefully documenting their process and findings 
to be incorporated into future assessments. 

 

! )
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This Use Case provides an assessment of a D):(.)-7(2"&?2*:%.&?/:(2@&that is deployed at a Military 

Base Small Modular Reactor (SMR). This is an example of a traditional Use Case where each methodology 
step is completed to inform the risk evaluation of this component level system that supports SMR 
operations. 

:@$) VQ7N4/<./-0)-W).,Q)F77Q77RQ0.)!+4AQ.)
The target site is a highly automated small modular reactor facility powering a military base. The reactor 

is assumed to have automated control and maintenance routines such that it can be normally operated with 
just three or more operators residing in a central control room, with short periodic maintenance requiring 
up to five personnel occurring on pre-planned schedules. The target is a distributed plant monitoring system, 
composed of a distributed plant sensor system (DPSS) and distributed plant sensor monitoring system 
(DPSMS). This distributed monitoring system works effectively as a theoretical “skin” around and inside 
the reactor and is composed of a large variety of pressure sensors, temperature sensors, vibration sensors, 
visual sensors, acoustic sensors, and other sensors distributed at all levels of the facility. As there is a large 
quantity of data produced by each sensor, there are multiple data aggregation nodes composed of digital 
microcontrollers which adaptively down-sample and combine this data before feeding it to the DPSMS 
located within the control room. The end goal of this system is to serve as a persistent, mesh-based 
monitoring network which allows real-time analysis of events within the facility independent of other 
control or monitoring systems already in-place. This allows the control room operators (who are normally 
the only personnel within the facility) to have “eyes and ears” at all levels of the facility to ensure installed 
hardware is operating as expected and that there are no unauthorized personnel or events on-site. In addition 
to providing collated and polished versions of the raw data coming in from across the facility, the computer 
hosting the DPSMS in the control room also has a variety of short- and long-term trend analysis programs, 
along with a database of manufacturer-provided ideal behavior and actual facility behavior, to identify long-
term anomalous trends and notify the operators of such. 

:@#) &-./-0+1)V/+A4+R )
The following notional diagram outlines the DPSS and DPSMS and relevant connections between these 

two systems. The DPSS is composed of a variety of sensor types mentioned above, with hardwired 
connections between these sensors and one of the multiple data aggregation nodes distributed across the 
facility. Correspondingly, these data aggregation nodes are hardwired to the DPSMS located within the 
control room. The DPSMS is composed of a combined computer and operator display system which 
receives nodes and displays input 
from the data aggregation nodes to 
the operators while simultaneously 
running the inputs through a series 
of pre-programmed and learned 
trend analysis programs which 
independently decide on providing 
alarm notifications to the operators. 
This input is then stored internal to 
the computer for future reference. 

!"#$%&'C;'<60"64/8'="/#%/3'=DB5B'/47'=DBB&



 

10 

:@:) K0PRQ4+./-0)-W)S4-NQ77Q78)I-R<-0Q0.7)+0*)6P0N./-07 )
The DPSS is composed of multiple digital and analog sensors, each of which is assumed to be unable 

of independent physical computation. The raw data from these sensors is fed directly to the data aggregation 
nodes, which are composed of single-board computers running simple data down-sampling and aggregation 
algorithms on top of a hardened Linux operating system. These nodes receive the data via data acquisition 
terminals (both analog and digital) incorporated into the node packaging. Other than the incoming data 
feeds and the outgoing connection to the DPSMS, the external ports and access points (including wireless 
communication capabilities) of the nodes are assumed disabled or removed.  

The DPSMS is composed of a single engineering workstation and attached monitor. The software is 
composed of a scheduler to receive input and coordinate the launching of visualization/analysis programs, 
the analysis programs themselves, and drivers to render information to the monitor. The hardware in the 
workstation is composed of a multi-core processor, computer memory and data storage disk, and physical 
connections to the monitor. Similar to the data aggregation nodes, other than the incoming data feeds and 
outgoing connection to the monitor, the external ports and access points (including wireless communication 
capabilities) of the engineering workstation are assumed disabled or removed. 

:@() I53Q4)!,4Q+.) F77Q77RQ0.)
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Opportunities for direct subversion of facility operations through attacks on the DPSS and DPSMS are 
minimal, as the system is strictly a remote diagnostic tool for use by the operators. However, it may still be 
desirable to attack this system due to rules and regulations in place due to the military nature of the facility. 
In particular, the operators are required to document in a logbook all operator- or system-flagged 
anomalies/occurrences detected via the DPSS/DPSMS, and if more than five per hour are detected (or if 
the operators deem an anomaly sufficiently problematic) they are required to place the facility into safe 
mode and call in an external security team to examine the detected anomalies. Upon examination and report 
by the inspection team, the operators must then consult external authorities to decide if the facility must 
shut down for more extensive inspection/maintenance or if the facility may resume operations. During this 
“safe mode” period the reactor is brought to a low-power state from which it is expected to be able to shut 
down rapidly, and the operators/facility are forbidden from responding to external power or load following 
requests. An attacker may wish to use these protocols to temporarily shut down or inhibit the base the 
reactor facility is powering momentarily, as backup generators may take time to start or the attack may be 
part of a larger-scale operation. Another source of disruption may be in the form of increased maintenance 
overhead, as the recorded logbooks and plant-wide sensor data may be used to make periodic assessments 
of facility health and maintenance needs. In this case the attacker’s goal may be to establish a pattern of 
high facility maintenance needs and untrustworthiness, resulting in distrust of diagnostic subsystems, 
increased maintenance personnel presence (and therefore increased chances for the exploitation of social 
engineering vulnerabilities) or escalating economic and political costs such that maintaining the presence 
of a base in the region is unappealing. 

As the DPSS and DPSMS are isolated systems which are effectively “air-gapped” from the outside 
world, it is highly unlikely that security vulnerabilities will be introduced via regularly scheduled updates 
or external firewall vulnerabilities. However, as the facility is military in nature and thus may be a higher-
value target to groups of interest, attacks using internal facility communications channels (similar to 
Stuxnet) or novel attacks using supply chain vulnerabilities should be studied. Additionally, the use of 
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social engineering to either introduce attack vectors into the system, or promote hidden attack vectors, 
should be examined.  

Attacks via tainted libraries and software may be readily used for targeting the DPSS/DPSMS. If an 
attacker is knowledgeable about either the firmware running on the data aggregation nodes or the high-level 
libraries running on the engineering workstation or is merely privy to a vulnerability in a widely used 
library, they may be able to package a payload composed of a variety of such vulnerabilities along with 
directives on next steps once a vulnerability is successfully used. The air-gapped nature of the 
DPSS/DPSMS does not disadvantage this class of attack, as either immediate or more long-term effects can 
be readily introduced, depending on the goal of the attacker, through the use of simple timed-release or 
periodic payload directives. For example, if an attack is focused on the DPSMS it may be feasible to 
implement a cryptographic subroutine as part of a ransomware attack, which would have immediate short-
term effects; the cryptography only needs to be complex enough to cause an alarm. Another attack might 
be frequent stopping/restarting of the data aggregation nodes during detected reactor transition periods, 
corresponding to a theoretically faulty node failure.  

Attacks via trusted communications channels may be possible if the DPSMS is compromised and if 
communication lines are sufficiently insecure between the DPSMS and DPSS. In this context, it is assumed 
that the data aggregation nodes will respond to certain incoming communication codes, either as part of 
standard communication protocols or as part of hidden/undocumented protocols introduced during node 
design. Using these vulnerabilities, it may be possible for attackers to enable the loading of malicious 
libraries into the node memory, enabling either the disabling of the node or more sophisticated attacks such 
as replay attacks. Vulnerabilities also exist from the other “direction”, in that if the data aggregation nodes 
are compromised then they may be able to send malicious input or commands to the DPSMS. Either of 
these attack vectors may be used maliciously on their own, or they may be combined with the tainted 
software attack discussed above to provide a vehicle for introducing complex payloads from device to 
device. 

Another direct and indirect attack vector is a supply chain attack, where if components/software are 
sourced from sources outside of trusted countries then this hardware/software may be compromised. For 
example, compromised hardware may be introduced which does not have a specific port/connection fully 
closed/disabled, allowing for later payload injection from attackers. Additionally, the software supply chain 
includes the potential for algorithm contractors to use insecure libraries which may allow for a variety of 
vulnerabilities. If the attacker is knowledgeable about these libraries or about the library design process, 
they may attempt to conceal a payload at some point in either the firmware delivery process of the data 
aggregation nodes or the delivery process of the higher-level libraries packaged on the engineering 
workstation. In either case, these supply-chain vulnerabilities may also be used maliciously on their own or 
may be used in combination with the communication channel vulnerabilities and the tainted software 
vulnerabilities discussed above to attack the facility. 

Social engineering attack opportunities towards facility operators may be available, however as these 
operators are expected to be in the control room for a majority of the time, clearly visible to others, this 
may not be a serious concern. Two other serious sources of social engineering vulnerabilities may come 
from contractors and maintenance personnel working on-site during scheduled or emergency maintenance, 
or from contractors/employees developing the software with the data aggregation nodes/engineering 
workstation. Specifically, contractors and maintenance personnel would be expected to move about the 
facility and would thus likely not arouse suspicion when carrying technical components inside, allowing 
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for potential attacks to be introduced via either plugged-in media or perhaps components (for example, data 
aggregation nodes) being swapped out entirely with malicious counterparts. Software developers during 
the design and iteration phase may be prompted for information on specific libraries being used through 
forum posts, conferences or academic papers published, or may even be compelled to introduce any number 
of vulnerabilities either knowingly or unknowingly by attackers. 

6A$/'(GC(?A,'$*(!&*+,(!**,;D-*'/($%"(<$9$D;:;*;'/ (

Given the target’s military nature, and the aforementioned nature of the system as an air-gapped and 
highly controlled set of equipment, the nature of an attacker should be assumed to be a nation-state 
equivalent. This entails a highly motivated team with a significant amount of financing and the ability to 
competently assess supply chain vulnerabilities in parts manufactured in difference locations. The 
development and usage of several zero-day vulnerabilities should be considered a possibility, with the 
additional possibility of deep supply chain attacks from firmware engineers (for example) or factory 
workers also considered. An attacker seeking to introduce this system should be considered highly skilled 
in the technical domains involved, as the electronics and sampling algorithms are mostly low-level and 
well-known and thus knowledge and theory on the discovery of vulnerabilities is generally well-
disseminated and well-taught. Additionally, since the DPSS/DPSMS are going to be operating in real-time 
it’s likely the programming will be accomplished in C/C++, likely prompting the attacker to consult experts 
on security vulnerabilities in these areas and allowing them to perform a detailed survey on vulnerabilities 
existing in these languages. 

6A$/'(HC(2'&-,;*3(<+%*,+:/($%"()'/9+%/'(<+-%*',.'$/-,'/ (

The air-gapped nature of the system again removes a large class of vulnerabilities from consideration, 
however there are several areas of improvement possible. For example, it was noted that the connections 
between the data aggregation nodes in the DPSS and the engineering workstation in the DPSMS are not 
strictly one-way with physical restriction, and that two-way communication is possible. We recommend 
the use of physical barriers such as data diodes to prevent such two-way communication, eliminating the 
possibility of communication vulnerabilities entirely. 

To avoid the possibility of data aggregation corruption, we recommend the deployment of redundant 
data aggregation nodes (suggested minimum of three) separately sourced to ensure firmware corruption in 
one controller cannot spread to others. We make the same recommendation for the engineering workstation 
in the DPSMS and suggest periodic comparisons/switching between the workstations to ensure system 
integrity. Barring this, we recommend a protocol of regular system wipes and reboots to disable the 
retention of long-term malicious software.  

The inspection and maintenance protocols are satisfactory; however the possibility of social 
engineering being used to introduce (“swap out”) functional equipment for malicious equivalents is not 
impossible, especially as the maintenance and inspection team may be composed of different members 
responsible for different jobs. Therefore, we recommend the use of a “two-man rule” where all maintenance 
and inspections are to be always performed by two personnel. This precludes a single person being 
successfully socially engineered into performing malicious activity.)

! )
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As shown in this Autonomous System Decision Loop, machine learning algorithms are implemented 
to perform detection, prediction, strategy selection, and recommendation. Since the system is a cyber-
physical system, the implementation of all these steps includes four aspects: hardware, software, machine 
learning models and the data stream. Hardware includes the sensors, actuators, and controllers. Software 
is the platform and environment which is used to collect this data and implement the models. Models are 
machine learning models. The data stream consists of data points which flows to and from each of these 
steps based on a predetermined frequency. In this document, a data point means at a certain time t, the 
data array of a set of sensors contains m sensors, which can be presented as: 

! ! " #! ! " $! ! #$! ! $$%$! !%  

!

!
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The detection function is responsible for detecting anomalies by using supervised and/or unsupervised 
models to classify whether the monitored data point is an anomaly or not. Unsupervised two-class 
classification models can determine whether the data point belongs to either the normal or abnormal class 
based on historical data. Supervised multi-class classification models have more flexibility, as they can be 
utilized to attribute anomalies to a specific class or cause.! 

 

 Supervised models require a database which contains historic data with labeled classes as shown in the 
Table below to perform dictionary-based detection. These classes can be normal state 1, normal state 2, 
abnormal state 1, abnormal state 2, …, abnormal state n. For example, a detection model for a feedwater 
system can have “normal operation under power level 100%” as normal state 1, “normal operation under 
power level 80%” as normal state 2, “feedwater pump degradation” as abnormal state 1. When a new data 
point is fed to the supervised model, it is classified to a certain class if the sensor array of the data point 
matches the certain pattern in the data base. Detection based on a supervised model has high accuracy for 
faults that are stored in the database, but obviously won’t be able to detect fault that are outside of the 
database. 

�'�H�W�H�F�W�L�R�Q���0�R�G�H�O�V
�6�H�Q�V�R�U�V
�$�F�W�X�D�W�R�U�V
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Unsupervised models only utilize data under “normal states” to build the model, so they are only able 
to classify any data point as either being within normal operational states or deviate from these normal 
states as an anomaly. However, unlike supervised models, unsupervised models can detect fault that have 
never seen before.  For unsupervised models, thresholds may be applied to residuals (the difference between 
the predicted values and real values) or statistics to detect anomaly (data points exceed thresholds). For 
unsupervised models, there are multiple methods available: a regressive model may be developed, with 
significant deviations from this model taken as anomalies, while other approaches which are not regressive 
(such as single-class support vector machines) might be used. Some fault can also be included into the 
normal data to be treated as normal data so that the detection results exclude certain faults. This technique 
is usually utilized in multiple fault analysis. For example, in the feedwater system in a PWR, an anomaly 
detected by an unsupervised model can result from both feedwater pump and condenser degradation. One 
way to identify the component which is at fault is to have two different models, one that includes normal 
operational data + feedwater pump degradation data and one which includes normal operational data + 
condenser degradation data. The root cause of the anomaly can then be discovered by comparing the outputs 
of these two models.  

Various supervised ML models such as K nearest neighbors (KNN) and decision trees can be utilized 
to attribute fault into a certain class. The database utilized to build these models is usually taken to contain 
historic component failure data across the 
industry, however such a database is usually 
quite difficult to prove as being 
comprehensive. Therefore, most detection 
models are unsupervised in order to avoid 
missing a fault which simply does not appear 
in the database. There are many ML 
algorithms which have been investigated in 
literature, such as regression, support vector 
machine, and ensemble trees. These models 
have some level of explainability and have 
been applied or have promising 
implementation status in the near future since 
they have less regulatory concerns. Deep 
learning (DL) algorithms, such as deep neutral 
networks also have been investigated more deeply in recent years with the application of fault detection in 
NPPs. Figure * gives a summary of a set of deep learning (DL) algorithm.  

!"#$%&'F;'D%6#4620"@2'/47'G&/80.'5/4/#&3&40'"4'<$@8&/%'D69&%'
D8/402;'14'HE7/0&7'5&0.67I*&40%"@'A&?"&9'9"0.'BE&@"/8'!6@$2'64'
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Prognostic models are utilized to predict the remaining useful life (RUF), which is the time before a 

piece of equipment completely fails and cannot perform its intended function. Prognostic models depend 
on the results from fault detection and diagnostics. Given the nature of prognostics and inadequate run-to-
failure data, statistics-based prognostic models are the focus of most existing literature. Regression, Markov 
chain, and stochastic filtering-based models are examples of methods that have been investigated to predict 
RUF. For example, the particle filter algorithm, a sequential Monte Carlo algorithm for nonlinear, non-
Gaussian systems, is one of the common methods utilized in prognostic research. It accounts for uncertainty 
by updating the probabilistic state estimation with real-time measurement.   

(@:) VQN/7/-0)R+O/0A)757.QR)T7.4+.QA5)7Q1QN./-0)X)4QN-RRQ0*+./-0U)
Once the fault is detected by detection models and the future health states are predicted by prognostics 

models, decision making system assesses the potential strategies and make recommendation in a timely 
manner to stop a fault from progressing to an emergency. An AI-based decision-making system is desired 
for this task, to be able to consider all possible strategies, select the optimal ones, and make a 
recommendation.  Several decision theory methods have been investigated in the literature: Bayesian 
method, utility theory, and Markov Decision Process. 

(@() %R<1QRQ0.+./-0)
To implement the autonomous control, all the above-mentioned ML models need to be implemented 

into a platform and interact with physical hardware. This Figure outlines the data flow: data points are 
acquired from sensors, actuators, and controllers such as distributed control system and fed into detection 
models. Detection models pulls data from database and determines the classification and analysis results 
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and then sends this data to prognostic models. Here, it is assumed that both the detection models and 
prognostics models are implemented on the same computational platform in the same core environment, 
such as Python. Then the results from the prognostic models are sent to the decision-making system to 
assess potential strategies and make recommendations. These recommendations usually involve control 
commands for controllers and actuators to act. It is assumed that decision making system utilizes a different 
platform from the detection and prognostics model. 

(@;) F..+NO)<-/0.7)+0*)7O/11)4QYP/4Q*)
In the above-described system, there are four general types of attacks points that threat actors can attack: 

the hardware, the software environment, the ML models, and their interfaces. 

!**$&I(*+(A$,"J$,'($%"(*A'(&+..-%;&$*;+%(&A$%%':/(+F(*A'(A$,"J$,'(

Attacking the hardware directly (modifying low-level PCB components and firmware, for example) is 
difficult, and almost always requires physical access. However, threat actors can alter the data moving into 
and out of the hardware using a false data injection attack. For example, attackers can tamper with the 
sensor lines coming from the steam generator water level meter that goes into the detection system, which 
in turn misleads the detection and prognostics, which can further lead to incorrect control command 
recommended by the decision-making system. Threat actors can also tamper with the control command 
recommendation coming from the decision-making system back into the actuators they’re controlling, 
directly causing unexpected changes not in line with what the system expects. In the former situation, threat 
actors need to have high-level system knowledge in order to manipulate the control commands indirectly 
via the detection system. If the detection models have high robustness, the models may identify the single 
compromised sensor as a degraded or failed sensor, which may not cause the decision-making system to 
take any action that impacts the actuator. If the threat actors tamper with several sensors in an uncorrelated 
manner, then it is more likely that the detection model will determine that there is a component or system 
level anomaly instead of single sensor failure. In short, the attackers need to compromise multiple sensors 
at the same time in a coordinated and intelligent manner, having extensive knowledge of the system, in 
order to pull off an effective attack. Therefore, the required skill level for this kind of attack is high. In the 
latter situation, the attackers may change a control command arbitrarily to cause physical impact without 
deep knowledge about the system. However, the threat actors still need to have some knowledge such as 
control command thresholds to avoid triggering an alarm and exposing themselves. The skill level for this 
attack is medium since there are available NPP simulators that attackers could use to get a sense of system 
and control command behavior. Another, more advanced attack which is unlikely but possible is if the 
threat actors have high knowledge about the system and have access to the system’s data stream. The 
attackers could send data from a simulator to the detection models and obtain the outputs from decision 
making system, and then make a surrogate model for the entire detection, prognostics, and decision-making 
system and then future manipulate the control command recommended by the decision system by 
manipulating the inputs of the detection system.  

!**$&I/(*+(/+F*J$,'('%#;,+%.'%* (

Two types of attacks on the software environment are possible: an attack on the platform for the system, 
and an attack the database environment for the database. Both require threat actors having knowledge of 
the software platform which is used to implement the system. In the former attack, an attacker could (for 
example) exploit known vulnerabilities in the Python runtime in order to gain control of, or disable, the 
system or the entire computer running the system. This kind of attack would obviously be debilitating if 
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carried out, since this would be exploiting inherent vulnerabilities to break out and achieve the attacker’s 
objectives in a straightforward manner – unlike in the hardware-based attacks, the attacker does not have 
to have intimate knowledge of the entire NPP, just information such as the computer and OS version, 
exploits for which are commonly worked on in open-source research. In the latter attack, attacker might 
target the database instead, since directly disabling the system, itself may result in backup systems coming 
online and the attack being quickly identified. The attacker may instead be able to leverage vulnerabilities 
in the database software to inject or remove specific fault states corresponding to planned attacks, thereby 
causing the system not to alarm or identify properly the anomaly when it is introduced. Either of these 
attacks can disable usage of the detection, prognostics, and decision-making system, which could be 
significant if the autonomous system is the only system that can maintain the safe operation of the NPP. 
It’s also worth mentioning that the attacker is not limited to strictly software-based vulnerabilities when 
attacking the software environment – methods which exploit hardware characteristics to enable software 
vulnerabilities are commonly called “side-channel” attacks. Many side-channel attacks are quite well-
known and easy for attackers to implement, as these attacks have been the focus of much research by the 
information security community in recent years. These attacks are also particularly dangerous, since unlike 
other attacks which can be mitigated by further research and development or software hardening, these 
attacks target the underlying compute fabric to enable vulnerabilities in the software layer and thus are not 
easily answered by using more advanced or robust techniques. Of course, these side-channel attacks are 
mitigated by frequent security patching policies, however patching may be accounted for by the attacker 
(and may even be included as part of their infiltration strategy) and patching these vulnerabilities may entail 
slowing down the system to the point where reliability becomes an issue.  While much of these concerns 
might be addressed by defense-in-depth security approaches, the estimated attacker skill for both of these 
attacks is Medium, since exploit information and training for common software frameworks is commonly 
available and there is a very active research community dedicated to discovering vulnerabilities in 
commercial software and in discovering enabled vulnerabilities via side-channel attacks.  

Attackers may perform a simultaneous attack during denial of service of the autonomous control system 
so that no control command will be given by autonomous control system to take the NPP to a safe state. 

!**$&I/(+%(.+"':/ (

Since the system is using machine learning models, attackers may instead develop methods specifically 
targeting the models themselves. This again takes the form of two classes of attacks, one focused on the 
detection, diagnostics, prognostics and decision-making systems themselves and another focused on the 
model’s “supply chain”. For the first class of attack, an attacker may draw upon existing research in 
adversarial machine learning to determine unique inputs which might cause the system to give an 
“incorrect” answer based on the current model state and training data. These adversarial attacks are 
commonly demonstrated as a minimal amount of mathematical noise added into computer vision inputs, 
however there is a broad field of research devoted to finding vulnerabilities in all kinds of machine learning 
models. The second class of attack is based on the attackers having enough resources and information to 
poison either the database, the models training process or the developed models, for example as part of 
periodic vendor-provided updates. Such attacks are also an active research topic and may be easier to 
accomplish than the first class, given that introducing specific information into the training process and 
deriving system behavior under those introduced poison states may be easier than attempting to derive the 
system state and determine precise vulnerabilities from that. Both attacks require detailed access by the 
attacker to the implemented machine learning models and/or access to the vendors supplying the models, 
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although once access is gained the attacker may be able to easily apply open-source reverse engineering 
tools and knowledge to accomplish their goals. Additionally, many of these vulnerabilities may be 
addressed by applying sufficient hardening techniques to the ML models, however doing so may require 
online updates to the underlying model and methods as all vulnerabilities will likely not be known upon 
first developing the model. Therefore, the estimated skill of an attacker to accomplish this attack is Medium. 

!**$&I(*+(*A'(;%*',F$&'(

Finally, an attacker may conduct an attack on interfaces between either the system and the NPP, or on 
the internal system interconnects. General examples of attacks on system interconnects might be direct, 
such as denial of service attacks, or might be indirect such as side channel attacks. For denial-of-service 
attacks, the most effective target for these attacks would likely be the data transmission network within the 
NPP itself, as targeting the industrial network would disable both knowledge of the system of the current 
state of the plant and would also disable system response. For internal system interconnect attacks, side-
channel attacks such as CPU-based attacks which focus on effectively exploiting memory and predictive 
scheduling vulnerabilities might also be effectively exploited to contaminate the data being fed to the 
system. The attack to the interface can cause denial of service, and data tamper. This requires attackers have 
knowledge the specific interface that is implemented. 
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At the start of the FY21 research cycle for this project our team invested a month of thought into 

defining the boundaries of this problem space. Our dialogue mostly centered on why anyone would build 
into an advanced reactor architecture autonomous and remote functions. In the methodology paper we 
described some of the business drivers such as new types of reactor deployments such as what is being 
posed by the United States and Russia with their forward deployed SMRs to support military operations. 
We also captured the requirements to include fully autonomous generation and distribution infrastructures 
that would load balance across an energy system that included not only nuclear, but hydro, wind, solar, and 
other traditional energy generation assets. To accomplish these objectives an autonomous systems decision 
loop must be implemented. This decision loop is dependent upon detecting event states and using 
algorithms to predict future event states. The decision loop is dependent upon algorithms to select strategies 
for achieving operational states that fit to these future event states. The decision loop requires algorithmic 
support to recommend strategies and ultimately execute these strategies through interaction with plant 
systems. The architectures we have reviewed to date have all included Digital Twin concepts for supporting 
the autonomous system decision loop. This Use Case is focused on subverting the Machine Learning 
algorithms and processing infrastructure necessary to implement the autonomous system decision loop. 

;@$) VQ7N4/<./-0)-W).,Q)F77Q77RQ0.)!+4AQ.)
This assessment will be performed against the Machine Learning infrastructure of an Advanced Reactor 

vendor that is implementing remote and autonomous operations capabilities into their design. The ML 
infrastructure includes a process for model creation that is dependent upon the type of data available for 
processing and the types of classifications that are required for successful model implementation. For this 
assessment we limit the attack space to subversion of algorithms using 2E#:)%*;& A%):%*)*1;& (.%F#*)*1;&
-#64"%%.)*1;&.2A.%1.#@@)*1;&#*"&)*32.2*62&#((#64:.  

-/,8&' : ;'*/0&#6%"&2'6>'/00/@Q2'64'5R'567&82! '

2*$1'KL+$:( >/9;+%$1' ( 2$D+*$1'( =,$-" (

?,$;%;%1( Inference by poisoning Poisoning 
Trojaning 
Backdooring 

Poisoning 

79',$*;+%/ ( Inference attacks Adversarial reprogramming 

Evasion 
3#+:2&*21#()E2&2E#:)%* 

Evasion 
3#+:2&A%:)()E2&2E#:)%* 

For each of the six attack types represented in Table 2 we will provide a threat assessment using the 
methodology that includes defining a subset of representative processes, components, and functions to 
assess relevant to that attack type, enumerating subversion options against the target, describing the type of 
threat actor capabilities required to engage in this type of subversion attack, and offer up security controls 
and response countermeasures.  
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The six attack scenarios based on attack types include: 

¥! 6+;/+%;%1(!**$&I($1$;%/*(0 @(F-%&*;+%(;.9:'.'%*'"(-/;%1($%(=6L!  

A 9,+&'//  is implemented within the autonomous systems decision loop that supports sensor data 
fusion (detection). Sensor data from plant field devices is aggregated by zones and levels and then 
passed securely to a system responsible for event classification that is then provided to a prediction 
process. The data arrives at the sensor fusion platform (&+.9+%'%*) via a TCP/IP listening daemon 
that writes the sensor data into a queue for processing by the ML classification engine. The ML 
classification engine is implemented using an FPGA (&+. 9+%'%*) to meet the performance 
requirements. The FGPA gate logic outputs the ML classifications (F-%&*;+%/) that are written to 
an output queue for ingestion by the next pipeline process element. 

¥! ?,+M$%;%1(!**$&I($1$;%/*(0@(&:$//;F;',/( 'N9:+;*;%1(*A'('N&;*$D;:;*3(+F(O-&:'$,(>%1;%'',/(

Nuclear engineering and Nuclear Power Plant operations is a world of predictability, for good 
reason, as stable reactor and subsystem operations is generally welcomed to ensure the safe 
generation of power and support the usual array of research reactor activities. For this reason, a 
trojaning attack, while not exactly straight-forward, would be fascinating to conduct, especially 
using the Nuclear Engineers as a target of the attack as it relates to their excitability. In this case a 
machine learning classifier 9,+&'// (is targeted during training(to identify trigger inputs that are 
reliably classified as events that Nuclear Engineers rarely see and would be excited by the 
observation (classification). The model implementation (F-%&*;+%) is then retrained to trigger 
classifications based upon common observations of excitement within the neural network. To better 
understand this attack we suggest reading the paper, G.%F#*)*1&B((#64&%*&'27.#+&'2(=%.4: .%&

¥! P$&I"++,;%1(!**$&I($1$;%/*(0@(?,$;%;%1('%#;,+%.'%*(*+('%/-,'(9',/; /*'%&'(+F($**$&I(#'&*+,(

A threat actor has been hired to conduct a backdoor attack against a Digital Twin responsible for 
the strategy selection as part of the implemented autonomous system decision loop. The strategy 
selection algorithm utilizes a classifier using the inputs from the prediction engine and producing 
as an output a set of recommendations. The threat actor recognizes that the classifier 9,+&'//  that 
runs on the Digital Twin will be trained against data that is specifically crafted for the boundaries 
of this operational environment. The organization that hired the threat actor realizes that with a 
?)4@;++%*"/,=$$)4@ they can increase the probability that even as the ML algorithms are exposed 
to updated training material that the backdooring approach will allow the attack vector they wish 
to target to persist and be available to them through subsequent production deployments of the 
model implementation F-%&*;+%.  

¥! =$:/'(6+/;*;#'( >#$/;+%(!**$&I($1$;%/*(.-:*; QF$&*+,(!&&'//(<+%*,+:(/3/*'.( -/;%1(&:'#',(;%9-*/ (

A threat actor was hired to perform Open-Source Intelligence (OSINT) gathering against a Nuclear 
Power Plant. The OSINT information collected documented the use of an Access Control System 
that ensured that access to sensitive areas of the NPP was limited to authorized staff. The 
implementation of the Access Control System utilized a two-factor approach with an Id Card paired 
with biometric data from a facial recognition application that utilized a machine learning algorithm 
to classify whether the individual standing in front of the camera requesting access to the given 
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area matches against the identification and authentication data stored in the system when the person 
was enrolled. The thread actor offers to another group the ability to attack the machine learning 
implementation with a A)0#(,B+#*$*C(,DC)#*+",=$$)4@ that would bypass the access control system 
through reducing the confidence or engaging in targeted or universal misclassification. 

¥! 8%F','%&'(!**$&I($1$;%/*(0@(.+"': /(D3(O66(8%/;"',(J;*A($&&'//(*+(79' ,$*;+%$:('%#;,+%.'%*(

A threat actor has determined that machine learning models have been implemented for 
classification of events as part of the autonomous system decision loop but has not been able to 
penetrate the E%)*"*"/,environment. They are able to recruit an insider and provide them with the 
capability to attach to the production ML classifier in the operational environment such that they 
can use an !"8(%("4(,=$$)4@ to reverse engineer the ML classifier and determine which attributes 
are being used to perform the classification process. 

¥! !"#',/$,;$:()'9,+1,$..;%1(!**$&I( $1$;%/*(#;"'+(/-,#';::$%&'(+F(.$*',;$:($&&'//(& +%*,+:(

A threat actor has been hired to steal nuclear material that is located in a protected area of secure 
building on the site of a Nuclear Power Plant that is remotely located without staff on site. The 
threat actor was able to use a A)0#(,B+#*$*C(,DC)#*+",=$$)4@,to gain access to the building and 
secure area but then encountered a video surveillance system that is trained on the lock system that 
protects the nuclear material. The threat actor decides to use an =;C(%#)%*)0, F(G%+/%)''*"/,
=$$)4@ such that they can move into the field of view of the protection camera without an alarm 
event triggering.  

;@#) &-./-0+1)V/+A4+R )

The following notional diagram represents the attack space that we will be performing our assessment 
on. The nature of Machine Learning is such that there are generally two phases: (.#)*)*1&H)*6+7")*1&@%"2+&
:2+26()%*& #*"& A+#(3%.@&.2I7).2@2*(:& "23)*)()%*J&#*"& %A2.#()%*:&%.& A.%"76()%*&H)*6+7")*1& @%"2+&
)@A+2@2*(#()%*&%*&:A26)3)2"&A+#(3%.@:J.&  
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Our focus for this threat assessment will be on model selection based upon autonomous system decision 
support requirements and associated attacks against those model choices. We have included within the 
E%)*"*"/ phase the humans that will influence the model selection and implementation. While each of the 
attack options highlighted in Table 2 has a human vulnerability associated to it, we will choose for this Use 
Case a subset to focus on to illustrate how this attack vector influences the other attack vectors. 
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Following the methodology steps, we must now enumerate the processes, components and functions of 

the assessment target. This K:2&9#:2 is interesting in how the assessment targets include the Digital Twins 
that support the autonomous system decision loop as well as systems that support physical security of 
protected areas and physical security of nuclear material. We even included as an attack target the nuclear 
engineers responsible for training classifiers to recognize a spectrum of events from routine events observed 
throughout each day during plant operations to zebra events that rarely occur and when observed inspire a 
mix of fear and excitement, hopefully more of the later and not the former. 

!11,'1$*'"(?$,1'*(@;/*  

An initial target list of processes, components and functions include:  
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The reader should notice that this aggregated target list, while overlapping with one provided in the 
first Use Case, contains a broader set of processes, components, and functions. There is nothing that 
prevents us from deep diving into any one of these areas, but to illustrate the ability for this methodology 
to be flexible relative to depth of analysis, we will, for example, look at the Machine Learning attacks as 
describe at the end of Section 5.1 and within the Cyber Threat Assessment identify the subversion options, 
associated threat actor attributes, and some recommended security controls and countermeasures based 
upon the published academic literature. Once again, our hope in FY22 is to instantiate these environments 
and assess the feasibility of each of these types of attacks and then provide guidance to the Advanced 
Reactor vendors on how to approach the secure implementation of Machine Learning Training and 
Operational environments. 

;@() I53Q4)!,4Q+.) F77Q77RQ0.)
The methodology calls for separate threat assessments for Autonomous System Processes and then for 

System Components and Functions. Our focus for this Use Case is specifically the ML Training and 
Operations environment both for the use of ML algorithms in support of the autonomous systems decision 
loop but also the use of ML in support of plant operations in the areas of physical security, material security, 
and access control. We will therefore take the aggregated target list along with the six attack scenarios and 
describe them collectively within each of the threat assessment phases.  
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The assessment question we need to answer in this case is what are the conditions and prerequisites for 
conducting each of these attacks on ML implementations. By defining the six attack types we have already 
defined the subversion options against the targets, minus the nuances of applying these subversion options 
against the ML implementations, such as a classification algorithm implemented on an FPGA versus a GPU 
versus a traditional CPU. 

¥! 6+;/+%;%1(!**$&I($1$;%/*(0 @(F-%&*;+%(;.9:'.'%*'"(-/;%1($%(=6L!  

In the example provided in Section 5.1, we are interested in attacking the ML implementation 
within the HG(%)$*+"#&environment. In order to accomplish this, we need to alter the data inputs to 
the model which are arriving from field devices. The ML model has been implemented within an 
FPGA that has been programmed to perform the model classifications. The attacker in this case has 
the following subversion options: 

(1)! Modify the field device data prior to it arriving at the TCP/IP listening daemon such that it is 
passed directly into the classification model. This approach may prevent any defensive triggers 
on the ML processing platform but also may fail if the input munging varies too far from what 
is statistically acceptable and the data never arrives due to failed validation checks. 

(2)! Attack the TCP/IP daemon such that select field device data is rewritten to achieve the 
requirements of the poisoning attack against the ML function. This is arguably a better target 
than the field devices assuming the field device communication pathway attack is not limited 
to an approachable number of pipes. The advantage of this, similar to a water-hole attack is 
that a single point of compromise yields access to all the data munging options necessary for 
this attack to at least be plausible if not successful. One concern would be handling the input 
queue since their design specifications required an FPGA to meet processing time requirements 
therefore input message volume is expected to be significant and thus could fail if attacked. 

(3)! Attack the FPGA ML implementation. We would refer the reader to our publication last year 
on attack pathways against FPGAs. This subversion option exists although would likely be the 
costliest from a resource perspective. 

¥! ?,+M$%;%1(!**$&I($1$;%/*(0@(&:$//;F;',/( 'N9:+;*;%1(*A'('N&;*$D;:;*3(+F(O-&:'$,(>%1;%'',/(

This attack after reading through the paper G.%F#*)*1&B((#64&%*&'27.#+&'2(=%.4:!  (also referenced 
in Section 5.1). On Page 2 of this paper, the authors state: 
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The attack scenario that we derived was to utilize this concept of excitability related to intersection 
of Nuclear Power Plants, Nuclear Engineers, and events of interest, and work our way backwards 
to conduct a E%+M)"*"/,=$$)4@ such that when we (the attacker) choose to deliver the type of effect 
that would likely trigger an alarm due to excitability, that the ML classifier will take the validated 
input data and when processed within the trojan-ed neural network the output event classification 
is benign, relative to the defined set of critical events. The attack in this case has the following 
subversion options: 

(1)! Attack the model training process by creating a taxonomy of critical events to target for 
misclassification and then identify with a small group of unwitting Nuclear Engineers which 
inputs would excite their neurons such that an ML programmed would include those attributes 
in the model implementation. 

(2)! Attack the classification process by identifying trojan triggers based upon sessions with the 
unwitting Nuclear Engineers that when injected cause the ML classification process to return 
the altered results. 

¥! P$&I"++,;%1(!**$&I($1$;%/*(0@(?,$;%;%1('%#;,+%.'%*(*+('%/-,'(9',/; /*'%&'(+F($**$&I(#'&*+,(

The attacker in this case wants to conduct a ?)4@;++%*"/, =$$)4@,to ensure persistence of the 
misclassifications after the model is exposed to updated training data. The researchers who have 
implemented this attack have identified operational environments that use transfer learning as 
vulnerable to this type of attack. As autonomous systems are architected with supporting Digital 
Twins that are dependent upon ML classifiers, it would seem logical that transfer learning would 
be prevalent as reactor architects and vendors hope to take advantage of previously trained models 
to operate their reactor implementations. This attack will take place on the E%)*"*"/  environment 
and the subversion options include: 

(1)! Injecting the ?)4@;++%N(;,E%)*"*"/,O)$)  into the training process, taking advantage of any 
opportunities for injection during the exchange within the context of transfer learning. 

(2)! A variant of (1) would be to conduct an unwitting insider attack against the staff responsible 
for training the models, although functionally it is the same subversion option, just an 
alternative engagement pathway, of which there are surely a few more that could be 
enumerated. 

¥! =$:/'(6+/;*;#'( >#$/;+%(!**$&I($1$;%/*(.-:*; QF$&*+,(!&&'//(<+%*,+:(/3/*'.( -/;%1(&:'#',(;%9-*/ (

This attack is specifically focused on image classification related to identification and 
authentication of users to protected areas of the Nuclear Power Plant, or really any facility where 
there are areas that require individual or group-based access control. This misclassification attack 
has the goal to take input that should be rejected and classify it as acceptable, based upon defined 
thresholds. The practical implementation of this is to have an unauthorized user swipe a stolen Id 
card and have their face (image) classification return as an acceptable match. Subversion options 
for this attack include: 

(1)! Depending upon the implementation, there are usually tunable parameters in the operational 
environment that allow for confidence intervals to be set. While this is not an attack directly 
against the ML component, subverting the confidence interval attributes would allow this A)0#(,
B+#*$*C(,DC)#*+",attack to be successful. 
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(2)! One of the unique aspects to this attack is that the ML models need to be updated based upon 
newly enrolled images which provides an opportunity for the attacker to engage in a poisoning 
attack that is not limited to a one-time or periodic model training activity.  

(3)! Not entirely sure this would work but attacking the enrollment process by using an image 
merging technique to combine a newly enrolled target with a known-good target based upon 
known classification attributes may lead to a successful attack. This would imply there is a 
subversion option that exists further left in the enroll – training lifecycle. 

¥! 8%F','%&'(!**$&I($1$;%/*(0@(.+"': /(D3(O66(8%/;"',(J;*A($&&'//(*+(79' ,$*;+%$:('%#;,+%.'%*(

As described in Section 5.1, this attack is focused on discerning model attributes through interaction 
with model inputs and outputs. The attack is bounded by only having access to the HG(%)$*+"#,
environment. The one subversion option in this case: 

(1)! Gaining access to the HG(%)$*+"# environment to interact with the ML model. In this case we 
bounded the access to a trusted insider so that we did not have to penetrate into the networks 
and systems externally. Our goal is to subvert the ML classifier by targeting extracted attributes 
and crafting an attack on the E%)*"*"/(or HG(%)$*+"#(environments. 

¥! !"#',/$,;$:()'9,+1,$..;%1(!**$&I( $1$;%/*(#;"'+(/-,#';::$%&'(+F(.$*',;$:($&&'//(& +%*,+:(

In this case the attack surface includes a video surveillance system that is trained on a protection 
mechanism for physical protection of nuclear material (think of a camera with a fixed point of 
interest on a lock). The subversion options (1) and (2), in this case, assume knowledge of the model 
attributes and include: 

(1)! Conduct a gradient-based attack such that the modifications injected into the video / image 
stream are maximized to impact the classifier’s output.  

(2)! Conduct a score-based attack such that the modifications injected into the video / image stream 
are optimized against the classifier’s confidence score. 

(3)! Conduct a decision-based attack such that the video / image streams are manipulated to produce 
classifications that meet attack requirements such as not triggering an alert. 

6A$/'(GC(?A,'$*(!&*+,(!**,;D-*'/($%"(<$9$D;:;*;'/ (

There are two central characteristics of threat actors that would be capable of conducting these types of 
attacks: expertise in Machine Learning and expertise in Nuclear Reactors and Power Plant architectures 
and operations. Each of the attack scenarios provided requires access to either the ML E%)*"*"/  or 
HG(%)$*+"# environments and each of these environments has some unique characteristics. In the E%)*"*"/ 
environment the threat actor will have to be familiar with the model language and training data attributes 
that will be unique to the classifier being implemented. The threat actor will have the opportunity to observe 
the model compilation and deployment pipeline which should help in better understanding the HG(%)$*+"# 
environment. In that environment the threat actor will need to be familiar with data pipelines and the varying 
types of processing platforms that implement ML classifiers to include traditional CPUs, GPUs, and in 
some instances, FPGAs. Add to this the highly specialized nature of data related to reactor and subsystem 
operations and the threat actor will experience a higher success rate in a shorter period of time should them 
be able to maximize their capabilities in both of these areas.  
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6A$/'(HC(2'&-,;*3(<+%*,+:/($%"()'/9+%/'(<+-%*',.'$/-,'/ (

We assume that attacks against the G.#)*)*1 and NA2.#()%*: environments outside of attacks on the 
Machine Learning components will be addressed in a separate threat assessment. While they could be 
included here our primary focus is on security controls and response countermeasures related to the ML 
algorithm attacks that are described in Section 5.1 and Phase 1 of this section. In the paper 75)00("/(#,)";,
7+&"$(%'( )#&%(#, 8+%, =;C(%#)%*)0, =$$)4@#,+", O((G, F(*"8+%4('("$, 6()%"*"/, the authors included a 
summary table of countermeasures for attacks against Machine Learning. The full listing with references 
to source papers is included in Appendix 4. They grouped these defenses into five (5) categories: 
B"E2.:#.)#+&G.#)*)*1O&P%-7:(&,2#.*)*1O&B"E2.:#.)#+&D2(26()%*O&D232*:)E2&D):()++#()%*O&#*"&C#@2&($2%.2()6&
#AA.%#6$L&Each of these defensive approaches provides some coverage against the six (6) attacks described 
in Section 5.1.  

!"# ',/$,;$:(?,$;%;%1(

This approach is the one that seems most obvious. Take the known adversarial models / training data 
and apply it to the model being protected such that the classifier is aware of the perturbations. This would 
apply for instance against the B+*#+"*"/, =$$)4@,and ?)4@;++%*"/, =$$)4@ where each attack includes 
injection during the model training phases. 

)+D-/*(@'$,%;%1(

This approach will be familiar to those who have worked on cyber-security protocols and defensive 
solutions. In this case the training mechanism introduces a timing component that adds noise to parameter 
states. Variations on this approach focus on the use of noise such as what Kumar recommends in using 
noisy rewards, but the core premise is that adversarial models that are not trained with recognition of the 
noise will underperform compared to those that have, thus indicating that the ML classifier is 
probabilistically under attack. This countermeasure would be applicable to the !"8(%("4(,=$$)4@,since it 
aligns optimally with black-box attacks. 

!"#',/$,;$:(R'*'&*;+% (

For this approach the ML classifier includes a mechanism for segregating true samples from adversarial 
ones such that the adversarial ones can be discarded, and the ML classifier need not be any more aware 
than as designed. One approach recommended by Havens utilizes a supervisory agent and a set of policies 
that are applied such that when data enters the ML classifier adversarial ones will cause unexpected policy 
states. This countermeasure would be applicable to E%+M)"*"/,and possibly A)0#(,B+#*$*C(,DC)#*+",=$$)4@#.  

R'F'%/;#'(R;/*;::$*;+%(

Defensive distillation is a training method where a model is trained to predict the output probabilities 
of another model which is trained on the baseline standard to give more importance to accuracy.' It is not 
entirely clear to the authors of this paper which attack types this could be applied to. 

L $.'(?A'+,'*;&(!99,+$&A  

This approach includes an interactive loop between the adversary and the ML model they are attacking. 
This approach extends to multi-player interactions with adversarial injects. There may be a home for this 
approach but not entirely sure where it is yet. 

 
'%C"+>>/&6/$%+&0%C(2&,/)*/+$2)/$%'()%^0;+&1/0%^,,+13$%(&%D//.%@/#&'()1/*/&,%O/+)&#&68%",,.$EHH+)?#;8()6H.0'HYbbc8bZeWf8.0'%
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This appendix is for the threat assessment team to use as a reference when performing the analysis of 
threat actor attributes and capabilities. 

!**$&I',(!"#$%*$1'/  

When considering cyber threat actor capabilities, it is helpful to understand how they will be used 
against target systems. These operational details provide insight into how defensive security controls and 
countermeasures can be implemented to protect and defend against cyber-attacks. For example, cyber threat 
actors operate using ()1$(&322"-#64&+%%A:, maneuvering against target systems while quickly pivoting based 
upon effect delivery observables.  

G)1$(&Q22"-#64&,%%A:& & & & & & & B-)+)(/&(%&"):6#."&7*$2+A37+&(%%+:&#*"&(#6()6:&

R2./&+)((+2&"%7-(&#-%7(&:7662::& & & & & 9+#.)(/&#*"&+#64&%3&-+7..2"&+)*2:&

52((2.&7*"2.:(#*")*1&%3&#((#64&6%:(:&& & & B((#642.:&=.)(2&@%.2&6%"2&

B-)+)(/&(%&6$%%:2&#((#64&()@)*1&#*"&6#"2*62&& ,2#:(&A.)E)+212&3#)+7.2:&#.2&3%7*"&(%%&+#(2&

9%@A+2M)(/&%3&#((#64&:7.3#62& & & & & D232*:)E2&#(()(7"2&

R'F'%"',(!"#$%*$1'/ (

When constructing security controls and defensive countermeasures it is helpful to remember how the 
defensive position is advantaged against threat actors and their capabilities. For example, cyber threat actors 
do not (usually) have a complete view of the target environment, but the cyber defenders (should) do. Given 
the complexity of autonomous system implementations, defensive teams should be able to use this to their 
advantage. 

B((#642.:&%*+/&:22&$#+3&%3&($2&6$2::&-%#.";&D232*"2.:&:22&($2&=$%+2&-%#."&

Q%.6)*1&#((#642.:&(%&.2E2#+&($2@:2+E2:&=)++&6#7:2&($2@&(%&-7.*&(%%+:2(:&#*"&@2($%"%+%1)2:&HGG0:J&

!3&#((#642.:&#.2&"):6%E2.2"&%*62;&($2/&$#E2&(%&7:2&%.&"2E2+%A&*2=&6#A#-)+)()2:&

R'F'%"',(R;/$"#$%*$1'/  

Similar to taking advantage of advantageous positions as a defender, defenders must also recognize and 
adapt to their limitations. For example, when designing security controls and countermeasures for an 
autonomous system, components and perceived targets must be prioritized, but it is not always clear on 
what the attacker is interested in and whether the defensive prioritization is mostly correct. 

'%(&#+=#/:&6+2#.&%*&=$#(&($2&#((#642.&):&)*(2.2:(2"&)*&

'2E2.&.2#++/&4*%=&)3&($2).&6$%:2*&:267.)(/&6%*(.%+:&#.2&$2+A37+&

9%@A+2M)(/S&D232*"2.:&$#E2&(%&7*"2.:(#*"&2E2./($)*1&)*&($2).&2*E).%*@2*(&

D232*:)E2&:A26)#+)T#()%*&):&*%(&6%@@%*&

,#64&%3&#((#642.&#=#.2*2:: 

R'F'%"',(6A;:+/+9A3($%"(!99,+$&A 

When planning out a defensive strategy, there are at least three tenets to live by: 
UMA26(&(%&-2&$#642"&

B((#642.:&($)*4&)*&1.#A$:V&D232*"2.:&:$%7+"&#:&=2++L&?(%A&($)*4)*1&)*&+):(:W&

X$2*&A2.3%.@)*1&#((#64&1.#A$&#*#+/:):;&6$%%:2&"2(26()%*&6$%42A%)*(:&=)($&6#.2&
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E5%()$,=4$+%#,J(0+"/,$+,+"(,+8,$5%((,40)##(#,+8,*"4%()#*"/,#+G5*#$*4)$*+"2,

<:$//(8(4?;',(8($%"(885       Investment: $0 to $10000+ USD 

Rely on others for tool and exploit code development. Limited ability to develop their own tools 
based upon publicly known vulnerabilities. 

<:$//(88(4?;',(888($%"(8S5      Investment: $1,000 to $10M+ USD 

Develop their own cyber-attack tools and exploits. Proficient in reconnaissance and targeting, and in 
the use of user and kernel mode root kits. Adept at discovering new vulnerabilities. 

<:$//(888(4?;',(S($%"(S85((     Investment: $1M to $1B+ USD 

Well-resourced actors dedicated to injecting/creating vulnerabilities in systems. Capabilities include 
full spectrum operations (cyber + military + intelligence). 

?;',(8 (
Practitioners who rely on others to develop the malicious code, delivery mechanisms, and execution 
strategy.(
!"#$%&'()"*+,"$('"-./.0'1"0, "0,,-&.0"$21"3$%&$4.2451'-.6'(7"%$3$8.-.0.')"9':4:;"<$-."=.2>?;"@'0$)3-,.0A:"

!"#$%&'()"2,0"%$3$8-'",B"1'6'-,3.24"%>)0,/"0,,-)",("./3-$20): "

?;',(88(
Practitioners with a greater depth of experience, with the ability to develop their own tools.(

!"#$%&'()"%$3$8-'",B"1'6'-,3.24"0+'.(",*2"/$-.%.,>)"%,1'"

!"#$%&'()"*.0+"%>($0'1",8C'%0.6');"1'6'-,3.24"0+'.(",*2" 0,,-)"8>0"2,0"7'0")&.--'1"'2,>4+"0,".1'20.B7"$21"
'?3-,.0"2,2!3>8-.)+'1"6>-2'($8.-.0.'):"

?;',(888(
Practitioners focused on discovery of novel vulnerabilities, adept at installing user/kernel mode root 
kits, capable of more narrow targeting using data mining techniques.(

!"#$%&'()"'?3'(.'2%'".2"%,21>%0.24"6>-2'($8.-.07"$2$-7).)",B"+>/$2);"+$(1*$('"$21"),B0*$('"3-$0B,(/) "

!"#$%&'()"%$3$8-'",B"%($B0.24"%>)0,/"./3-$20)">).24"%+$.2'1"'?3-,.0)"$21"%>)0,/"0,,-)"B,("1$0$"/.2.24"

?;',(8S (
Criminal or state actors who are organized, highly technical, proficient, and well-funded(

!"#$%&.24"D'$/)"*.0+"('),>(%')"0,"3'(B,(/"2$((,*"3(,0 ,%,-"$2$-7).)"$21"('6'()'"'24.2''(.24 "

!"#$%&.24"D'$/)"%$3$8-'",B"0,,-)'0 "-.B'%7%-'"/$2$4'/'20".2%->1.24"*'$3,2.E$0.,2",B"2'* "6>-2'($8.-.0.')"

?;',(S (
State actors capable of vulnerability placement through active programs against commercial products(

!"#$%&.24"D'$/)"*.0+"('),>(%')"0,"%,21>%0"),3+.)0.%$0'1")>33-7"%+$.2"$00$%&)&

!"#$%&.24"0'$/)"%$3$8-'",B"+$(1*$('"1')0(>%0.,251.)(>30.,2F"3(,B.%.'20".2".2B,(/$0.,2"$21".2B->'2%'",3): "

?;',(S8 (
States with the ability to successfully execute full spectrum (cyber capabilities in combination with all 
of their military and intelligence capabilities) operations to achieve a specific outcome in the political, 
military, or economic, etc. domains.(
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7#',#;'J (

We include this appendix based upon some artifacts collected throughout the Use Case development 
process. In this case we provide the reader with some ideas on how to think through hardware supply chain 
attacks and how they might be assessed within the context of advanced reactor architectures and the 
inclusion of features that support remote and autonomous operations. 

R'/&,;9*;+%(+F(*A'(!//'//.'%*(?$,1'* (8(

A large group of hacktivist-class attackers steal IT remote access passwords through phishing attacks. 
These attackers eventually compromise the IT Windows Domain Controller, create new accounts for 
themselves, and give the new accounts universal administrative privileges, including access to ICS assets 
that have a trust dependency on the Domain Controller. The attackers log into the ICS equipment and 
observe the operation of the ICS HMI until they have learned what many of the screens and controls do. At 
that time, the group takes over the HMI and uses it to subvert the physical process. Simultaneously, the 
attackers use the administrative credentials to log into ICS equipment, wipe the hard drives, and where 
possible, zero out the equipment firmware.  

S$,;$*;+%/C When targeting other kinds of industries, similar attacks are possible, wiping control 
system equipment, and triggering unplanned shutdowns.  

2+9A;/*;&$*;+%C This is a summary of the attack techniques used in the 2016 attack on several Ukraine 
electric distribution companies. The attackers had good knowledge of cyber systems, but limited knowledge 
of electric distribution processes and control systems.  

<+%/'T-'%&'/C In the case of the attacks on Ukraine, power was shut off to over 200,000 people, for 
up to 8 hours. Power was only restored when technicians travelled to each of the affected substations, 
disconnected control system computers, and manually turned-on power flows again. More generally, 
unplanned shutdowns are a consequence of this class of attack, and possibly emergency, uncontrolled 
shutdowns with the potential for equipment damage that accompanies such shutdowns. 

R'/&,;9*;+%(+F(*A'(!//'//.'%*(?$,1'* (88(

A sophisticated attacker compromises the IT network of an enterprise with a heavily defended industrial 
site. The attacker steals information about which vendors supply the industrial site with servers and 
workstations, as well as which vendors routinely ship that equipment to the site. The attacker then develops 
a relationship with the delivery drivers in the logistics organization, routinely paying the driver modest 
sums of money to take 2-hour lunch breaks, instead of 1-hour breaks. When IT intelligence indicates that a 
new shipment of computers is on its way to the industrial site, the agency uses the 2-hour window to break 
into the delivery van, open the packages destined to the industrial site, insert wirelessly accessible single-
board computers into the new equipment, and then re-package the new equipment so that the tampering is 
undetectable. Sometime after IT records show that the equipment is in production, the attackers access their 
embedded computers wirelessly, to manipulate the physical process. The attackers eventually impair 
equipment protection measures, crippling production at the plant, through what appear to be a long string 
of very unfortunate, random, equipment failures.  

2+9A;/*;&$*;+%C This is an attack be a very sophisticated adversary. This attacker has the physical “feet 
on the street” to carry out covert actions, such as breaking into the delivery van, and quickly disassembling, 
modifying, reassembling, and re-packaging compromised equipment. The attacker is cyber-sophisticated, 
maintaining a long-term presence on the target's IT network, and understanding the design of a variety of 
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computer equipment enough to understand how to subtly insert additional hardware into that equipment. 
The attacker has a high degree of engineering sophistication as well, to understand the structure of the 
physical process, the control systems, and the equipment protection systems enough to design and carry out 
physical sabotage and making damaged equipment look like random failures. 

<+%/'T-'%&'/C Costly equipment failures and plant production far below targets.  

R'/&,;9*;+%(+F(*A'(!//'//.'%*(?$,1'* (888(

887?(6;#+*C(Hacktivists annoyed with the environmental practices of an industrial site learn from the 
popular press that the site is starting to use new, state-of-the art, Industrial Internet of Things edge devices 
from a particular vendor. The attackers search the media to find other users of the same components, at 
smaller and presumably less-well-defended sites. The hacktivists target these sites with phishing email and 
gain a foothold on the IT and ICS networks of the most poorly defended of these IIoT-using sites. The 
hacktivists gain access to the vendor's IIoT equipment at the sites and discover that the operating system 
for these devices is an older version of Linux, with many known vulnerabilities. The attackers take over 
one of the IIoT devices. After looking at the software installed on the device, they conclude that the device 
is communicating through the Internet with a database in the cloud from a well-known database vendor. 
The attackers download Metasploit to the IIoT device and attack the connection to the cloud database with 
the most recently released exploit for that database vendor. They discover that the cloud vendor has not yet 
applied a security update for that vulnerability, and they take over the database servers in the cloud vendor. 
In their study of the relational database and the software on the compromised edge devices, the hacktivists 
learn that the database has the means to order edge devices to execute arbitrary commands. This is a 
“support feature” that allows the central cloud site to update software, reconfigure the device, and otherwise 
manage complexity in the rapidly evolving code base in this edge device. The hacktivists use this facility 
to send commands and standard attack tools and other software to the edge devices in those ICS networks 
the hacktivists regard as environmentally irresponsible targets. Inside those networks, the attackers use 
these tools and remote-command facilities to look around for a time and eventually erase hard drives or 
cause what other damage they can, triggering unplanned shutdowns. In short, hacktivists attacked a heavily 
defended client of cloud services, by pivoting from a poorly defended client, through a poorly defended 
cloud.  

2+9A;/*;&$*;+%C These attackers are of moderate cyber-sophistication. They can download and use 
public attack tools that can exploit known vulnerabilities, they can launch social engineering and phishing 
attacks, and they can exploit permissions with stolen credentials. Hacktivists usually have a very limited 
degree of engineering sophistication.  

<+%/'T-'%&'/C Unplanned shutdowns, lost production, and possible equipment damage. 
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E%4,F-%,"1%*'5*>,14,0%'M2%","$6J'(EL5M.'
S;/.31,.7,;<=,YOOZ'

':;03036('0B.,]20123036,477;@A1,

!N5';#"'5*>%"&,"2,-'8%4%$42#1'
&0;36,.7,;<=,YOKZ,

4 77;@A1,].:75:D036,78.,G7;7.1,

?%O,"*'N#1;+&2#1'E,4"2K'
b;36,.7,;<=,YOcZ,

4 77;@A1,].:75:D036,78.,-.d;:?1 ,

96"%,4%1%*'E,"H#>'8%$2&2#1'!"#$%&&%&'(9E8!&.'
\;<<.62,.7,;<=,YK+Z,

4 77;@A1,].:75:D036,78.,-.d;:?,\.3.:;7023 ,

C,7%F96%#"%42$'5))"#,$6'
^:;/2,.7,;<=,YK*Z,

"201.,^ ;1.?,477;@A1,

C,7%F96%#"%42$'5))"#,$6'
e653B2<5,.7,;<=,YK)Z'

477;@A1,';:6.7036,78.,]2<0@C,

G%1$67,"H210'
^.8`;?;3,.7,;<=,YKTZ,

\.3.:0@,4?/.:1;:0;<,477;@A1,

P,4%"'E,"H210 '
^.8`;?;3,.7,;<=,YJKZ,

R2?.<,%f7:;@7023,477;@A1,

5*>%"&,"2,--J'C+2*%*'=K)-#",42#1'(5C=.'
^.8`;?;3,.7,;<=,Y_cZ,

#0B07.?,477;@A,G;BI<.1,

P,&&%"&4%21'?#I+&4'?%21;#"$%7%14'L%,"1210'(P?QL.'
4D?5<<;8,.7,;<=,YO)Z,

\.3.:0@,4?/.:1;:0;<,477;@A1,

82&4"2I+42#1,--J'?#I+&4'!#-2$J':4%",42#1'
GB0:32/;,.7,;<=,YOTZ,

477;@A1,';:6.7036,78.,]2<0@C,

!? FE8!&'A'@? FE8!& ,
'.11<.:,.7,;<=,YOUZ,

\.3.:0@,4?/.:1;: 0;<,477;@A1,

@#2&%'B2-4%"'
X5B;:,.7,; <=,YOJZ,

477;@A1,].:75:D036,78.,-.d;:?1,
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"#$#%&#&!'(')%&*!+**',-&!.%!/',0)%#!1#'2%)% (!3.42,#&!
!
YJUZ,, H=,X21,;3?,Q=,G2369,gQ.</036,0372,;?/.:1;:0;<,;77;@A1,23,?..I,I2<0@0.19h,;:&0/,I:.I:037,;:&0/N*O+J=+_UJ)9,

)+*O=,
YUKZ, 4=,];77;3;0A9,i=,';369,G=,#059,\=,^2BB;33;39,;3?,\=,F82d?8;:C9,g-2D517,?..I,:.03E2:@.B.37,<.;:3036,

d078,;?/.:1;:0;<,;77;@A19h,03,]:2@..?0361,2E,78.,*O78,!37.:3;7023;<,F23E.:.3@.,23,457232B251,46.371,;3?,
R5<7046.37,GC17.B1=,!37.:3;7023;<,V253?;7023,E2:,457232B251,46.371,;3?,R5<70;6.37,GC17.B19,)+*K9,II=,
)+U+j )+U)=,

YU_Z, k=,S;39,^=,!=,-5D0317.039,'=,4D:;8;B9,'=,4<I@;39,e=,Q.,l.<9,G=,%:E;309,Q=,S5D@`.3A29,F=,#.@A0.9,;3?,]=,
R237;65.9,g-.03E2:@.B.37,<.;:3036,E2:,;57232B251,?.E.3@.,03,12E7d;:.(?.E03.?,3.7d2:A0369h,03,
!37.:3;7023;<,F23E.:.3@.,23,Q.@01023,;3?,\;B.,'8.2:C,E2:,G.@5:07C=,GI:036.:9,)+*K9,II=,*UJj *_J=,

Y_OZ, l=,^.8`;?;3,;3?,4=,R530:9,gb8;7./.:,?2.1,327,A0<<,?..I,:.03E2:@.B.37,<.;:30369,B;A.1,07,17:236.:9h,;:&0/,
I:.I:037,;:&0/N*O*)=+cTUU9,)+*O=,

Y_TZ, '=,F8.39,b=,"059,k=,&0;369,&=,^;09,H=,#059,i=,S;39,;3?,\=,#09,g\:;?0.37,D;3?(D;1.?,;?/.:1;:0;<,7:;03036,E2:,
6.3.:;<0`.?,;77;@A,0BB5307C,2E,4TF,I;78,E03?0369h,;:&0/,I:.I:037,;:&0/N*K+O=+_OJ)9,)+*K=,

Y_KZ, ^=,l;80?,;3?,4=,R530:9,gR0706;7023,2E,I2<0@C,B;30I5<;7023,;77;@A1,23,?..I,m(3.7d2:A1,d078,I;:;B.7.:(
1I;@.,3201.9h,03,!37.:3;7023;<,F23E.:.3@.,23,F2BI57.:,G;E.7C9,-.<0;D0<07C9,;3?,G.@5:07C=,GI:036.:9,)+*K9,
II=,U+_j U*O=,

YO+Z,, 4=,R;3?<.A;:9,k=,i859,4=,\;:69,#=,V.0(V.09,;3?,G=,G;/;:.1.9,g4?/.:1;:0;<<C,:2D517,I2<0@C,<.;:3036N,4@70/.,
@2317:5@7023,2E,I8C10@;<<C,I<;510D<.,I.:75:D;702319h,03,)+*O,!%%%$-GH,!37.:3;7023;<,F23E.:.3@.,23,
!37.<<06.37,-2D271,;3?,GC17.B1,L!-eGM=,!%%%9,)+*O9,II=,TcT)j ,TcTc=,,

YO*Z,, #=,]03729,H=,Q;/0?1239,-=,G5A78;3A;:9,;3?,4=,\5I7;9,g-2D517,;?/.:1;:0;<,:.03E2:@.B.37,<.;:30369h,03,
]:2@..?0361,2E,78.,TU78,!37.:3;7023;<,F23E.:.3@.,23,R;@803.,#.;:3036(l2<5B.,O+=,HR#-=,2:69,)+*O9,II=,
)K*Oj )K)_=,

YO_Z,, k=(F=,#039,R=(k=,#059,R=,G539,;3?,H=(^=,S5;369,gQ.7.@7036,;?/.:1;:0;<,;77;@A1,23,3.5:;<,3.7d2:A,I2<0@0.1,
d078,/015;<,E2:.106879h,;:&0/,I:.I:037,;:&0/N*O*+=++K*U9,)+*O=,,

YOOZ,, 4=,S;/.319,i=,H0;369,;3?,G=,G;:A;:9,ge3<03.,:2D517,I2<0@C,<.;:3036,03,78.,I:.1.3@.,2E,53A32d3,
;?/.:1;:0.19h,03,4?/;3@.1,03,".5:;<,!3E2:B;7023,]:2@.11036,GC17.B19,)+*K9,II=,cc*_j cc)_=,,

YOKZ,, k=,&0;369,b=,"059,H=,#059,'=,F8.39,;3?,i=,S;39,g4,]F4(D;1.?,B2?.<,72,I:.?0@7,;?/.:1;:0;<,.f;BI<.1,23,m(
<.;:3036,2E,I;78,E03?0369h,03,)+*K,!%%%,'80:?,!37.:3;7023;<,F23E.:.3@.,23,Q;7;,G@0.3@.,03,FCD.:1I;@.,
LQGFM=,!%%%9,)+*K9,II=,OOTj OK+=,,

YOcZ,, H=,b;369,k=,#059,;3?,^=,#09,g-.03E2:@.B.37,<.;:3036,d078,I.:75:D.?,:.d;:?19h,;:&0/,I:.I:037,
;:&0/N*K*+=+*+T)9,)+*K=,,

YK+Z,, l=,\;<<.629,-=,";/.0:29,;3?,Q=,-=,!315;9,g-.03E2:@.B.37,<.;:3036,53?.:,78:.;719h,03,]:2@..?0361,2E,78.,
444!,F23E.:.3@.,23,4:70E0@0;<,!37.<<06.3@.9,/2<=,TT9,)+*c9,II=,ccTcj ccU+=,,

YK*Z,, R=,^:;/2,;3?,]=,R.:70A2I25<219,ge3,78.,:2D5173.11,2E,<.;:3036,03,6;B.1,d078,172@8;170@;<<C,I.:75:D.?,
I;C2EE,2D1.:/;702319h,\;B.1,;3?,%@232B0@,^.8;/02:9,/2<=,*+T9,II=,U*j __9,)+*O=,,

YK)Z,, e=,e653B2<59,"=,\;319,;3?,'=,G5BB.:19,gR030B;f,07.:;70/.,?C3;B0@,6;B.N,4II<0@;7023,72,323<03.;:,
:2D27,@237:2<,7;1A19h,03,)+*K,!%%%$-GH,!37.:3;7023;<,F23E.:.3@.,23,!37.<<06.37,-2D271,;3?,GC17.B1,
L!-eGM=,!%%%9,)+*K9,II=,_c*cj _c)J=,,

YKTZ,, l=,^.8`;?;3,;3?,4=,R530:9,g4?/.:1;:0;<,:.03E2:@.B.37,<.;:3036,E:;B.d2:A,E2:,D.3@8B;:A036,@2<<01023,
;/20?;3@.,B.@8;301B1,03,;57232B251,/.80@<.19h,;:&0/,I:.I:037,;:&0/N*K+_=+*T_K9,)+*K=,

YJKZ,, l=,^.8`;?;3,;3?,b=,S159,gG.n5.370;<,7:066.:1,E2:,d;7.:B;:A036,2E,?..I,:.03E2:@.B.37,<.;:3036,I2<0@0.19h,
;:&0/,I:.I:037,;:&0/N*c+_=+**)_9,)+*c=,

Y_cZ,, l=,^.8`;?;3,;3?,b=,S159,g43;<C101,;3?,0BI:2/.B.37,2E,;?/.:1;:0;<,7:;03036,03,?n3,;6.371,d078,
;?/.:1;:0;<<C(650?.?,.fI<2:;7023,L;6.M9h,;:&0/,I:.I:037,;:&0/N*c+_=+***c9,)+*c=,

YO)Z,, R=,4=,4D?5<<;89,S=,-.39,S=,^=,4BB;:9,l=,R0<.3A2/0@9,-=,#529,R=,i8;369,;3?,H=,b;369,,gb;11.:17.03,
:2D517,:.03E2:@.B.37,<.;:30369h,;:&0/,I:.I:037,;:&0/N*c+O=*T*c_9,)+*c=,,

YOTZ,, %=,GB0:32/;9,%=,Q28B;72D9,;3?,H=,R;:C9,gQ017:0D57023;<<C,:2D517,:.03E2:@.B.37,<.;:30369h,;:&0/,I:.I:037,
;:&0/N*c+)=+KO+K9,)+*c=,,

YOUZ,, F=,'.11<.:9,k=,%E:2309,;3?,G=,R;332:9,g4@7023,:2D517,:.03E2:@.B.37,<.;:3036,;3?,
;II<0@;70231,03,@237035251,@237:2<9h,;:&0/,I:.I:037,;:&0/N*c+*=+c*KU9,)+*c=,,

YOJZ,, 4=,X5B;:,.7,;<=9,g%38;3@036,I.:E2:B;3@.,2E,:.03E2:@.B.37,<.;:3036,B2?.<1,03,78.,I:.1.3@.,2E,3201C,
:.d;:?19h,]8=Q=,?011.:7;70239,)+*c=! !
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